
Dr. Kaled Alshmrany
The University of Manchester

kaled.alshmrany@manchester.ac.uk

113/09/2024 1

Efficient Hybrid Fuzzing for Detecting Vulnerabilities
and Achieving High Coverage in Software

FuSeBMC - AI

mailto:kaled.alshmrany@manchester.ac.uk

Poor software quality cost US companies $2.41 trillion in
2022, while the accumulated software Technical Debt (TD)

has grown to ~$1.52 trillion

TD relies on temporary easy-to-
implement solutions to achieve short-

term results at the expense of
efficiency in the long run

The cost of poor software quality
in the US: A 2022 Report

How much could software errors cost your business?

2

FuSeBMC - AI

Market Size

3

FuSeBMC - AI

Proposed Solution
FuSeBMC-AI

4

FuSeBMC AI

Program
Under Test

Property to
Test

LLM
Module FuSeBMC v4: Improving code coverage with smart seeds via BMC, fuzzing and static analysis • 111:7

Fig. 2. The Framework of FuSeBMC v4. This figure illustrates the main components of FuSeBMC. Our tool starts by
instrumenting and analyzing the source code, then performs coverage analysis in two stages: seed generation and test
generation.

and an integer candidate solution in the range [1,100] as input from the user. It terminates successfully if the
provided candidate solves the equation. However, the program returns an error if the given equation doesnot
have real solutions or the input candidate value is outside the [1,100] range.

3.2 Code Instrumentation & Static Analysis
At this stage, FuSeBMC instruments the PUT and performs multiple static analyses. It takes the PUT (i.e., a C
program) and a property le as inputs and produces three les: the instrumented program, Goal Queue, and
Consumed Input Size.

3.2.1 Code Instrumentation. FuSeBMC uses Clang tooling infrastructure [1] at its front-end to parse the input C
program and traverse the resulting Abstract Syntax Tree (AST), recursively injecting goal labels into the PUT.
This process is guided by theFuSeBMC code coverage criteria. Namely, FuSeBMC inserts labels inside conditional
statements, loops, and functions as follows.

• For conditional statements: the label is inserted at the beginning of the block whether the statement is an
i f , el se, or an instrumented empty el se.

• For loops: the label is placed at the beginning of the loop body and right after exiting the loop.
• For functions: labels are injected at the beginning and at the end of the function body.

Furthermore, FuSeBMC adds declarations for several standard C library functions, such as “printf, “strcpy”,
“memset” and other C language functions, to ensure that we cover the majority of the functions that we may
encounter in large programs while also maintaining the proper operation of our approach. The resulting in-
strumented code is functionally equivalent to the original C program. Figure 3b demonstrates an example of the
described code instrumentation for the program in Figure 3a.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Bug
Report

Successful
+

Coverage
Statistics

Test
Validator

PUT + Test CaseModified PUT

• Use Clang tooling infrastructure
• Employ three engines in its reachability

analysis: one BMC and two fuzzing engines
• Use a tracer to coordinate the various engines

FuSeBMC - AI

FuSeBMC-AI
Software Project

FuSeBMC-AI source code is written in C++ and
Python; it is available for download on GitHub. Also,
the instructions for using the tool FuSeBMC-AI are
given in the file README.

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340 5

FuSeBMC - AI

Competition on Software Testing 2023:
Results of the Cover-Error Category

FuSeBMC achieved 1st place in Cover-Error
https://test-comp.sosy-lab.org/2023/

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

6

FuSeBMC - AI

https://test-comp.sosy-lab.org/2023/

Competition on Software Testing 2023:
Results of the Cover-Branches Category

FuSeBMC achieved 1st place in Cover-Branches
https://test-comp.sosy-lab.org/2023/

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

7

FuSeBMC - AI

https://test-comp.sosy-lab.org/2023/

Competition on Software Testing 2023:
Results of the Overall Category

FuSeBMC achieved 3 awards: 1st place in Cover-Error, 1st place in
Cover-Branches, and 1st place in Overall

https://test-comp.sosy-lab.org/2023/

Alshmrany, K., Aldughaim, M., Bhayat, A., Cordeiro, L.: FuSeBMC v4: Smart Seed Generation
for Hybrid Fuzzing - (Competition Contribution). FASE 2022: 336-340

8

FuSeBMC - AI

https://test-comp.sosy-lab.org/2023/

Awards

FuSeBMC-AI received 18 significant awards from the International
Competition on Software Testing (Test-Comp 2021 - 2024) organised by the
European Joint Conferences on Theory and Practice of Software (ETAPS).

9
https://test-comp.sosy-lab.org/2024/

FuSeBMC - AI

https://test-comp.sosy-lab.org/2024/

Publications

10

• Published paper in Fundamental Approaches to Software Engineering – 24th
International Conference, FASE 2021

• Published paper in The International Conference on Tests and Proofs, TAP
2021

• Published paper in Fundamental Approaches to Software Engineering – 25th
International Conference, FASE 2022

• Published paper in The Formal Aspects of Computing Journal FAC 2024

• Published paper in IEEE Secure Development Conference, SecDev 2022

• Published paper in Fundamental Approaches to Software Engineering – 26th
International Conference, FASE 2023

FASE
2021

FASE
2022

FASE
2023

FuSeBMC - AI

18 awards from the
international competitions on
software testing (Test-Comp)
2012-2024 at FASE.

Most Influential tool at
international Competitions
2021-2024.

It is classified as Green
testing tool (low
Consumption of CPU and
Memory).

The ability to detect
vulnerabilities effectively
and quickly compared with
state-of-the-art tools.

Practical and academic
contributions illustrated in 6
Published papers in the
field.

FuSeBMC-AI ’s Impact: Awards and Industrial Deployment

11

FuSeBMC - AI

12
FuSeBMC - AI

FuSeBMC-AI combines advanced verification
and AI methods to detect and fix over 40
types of security vulnerabilities in C
language source code (can be extended to
other languages). It generates detailed bug
reports with locations, types, and suggested
fixes, enhancing security and reliability, and
enabling continuous learning of software
developers. This has earned FuSeBMC-AI 18
Intl. awards in competitions compared to
tools from Amazon, Tata, Intel, and others.

SOURCE CODE SECURITY
WITH FUSEBMC-AI

JANUARY, 20 24

Overview
FuSeBMC-AI aims to revolutionize software testing. Originating from
collaborations with ARM and Intel, it addresses the need for robust automated
testing tools, targeting software developers.

Manual testing is impractical
due to high costs, complexity,
and a shortage of skilled testers.
Existing automated tools often
fail to identify or fix security
issues and can generate many
false alarms, creating additional
challenges for developers. There
is a pressing need for powerful
and reliable testing tools to
prevent cyber-attacks.

The Need Innovative Solution

richard.allmendinger@manchester.ac.uk
rachel.pooley@uominnovationfactory.com

Oxford Road
Manchester

Greater Manchester
M13 9PL

Prof. Richard Allmendinger
A I Special i st ,

A dvisor , Professor

Dr. Kaled Alshmrany
Consul tant , Researcher,
Cybersecuri ty Special i st

£60k will enable us to develop an MVP which has significantly
lowered the integration burden on customers, which will be a
coherent and demo-able product, suitable for significant
investment to kick start a high growth spin-out company.

Financial Consideration

FUSEBMC- AI

Our Team

Industry Context
The rising complexity of software has made manual testing impractical. The
market for automated testing tools exceeds $51.8 Billion annually. FuSeBMC-AI
offers a powerful solution to detect and repair security vulnerabilities whilst
keeping the number of false alarms minimal, meeting the growing demand for
secure coding tools.

We have validated our core technologies in the industry via partnerships with
Arm, Ethereum, Intel, and Nokia. From market validation interviews, we have
identified a tangible need for this technology across several high-security sectors.
Next, we need to develop the core technology in an integration-friendly manner.

Development Stage and Roadmap

Prof. Lucas Cordeiro
Cybersecuri ty Specia l i st ,

A dvisor , Professor

Dr. Rachel Pooley
Innovation Discovery

Manager

Find out more about FuSeBMC-AI at :
https://github.com/FuSeBMC/

Thank you …

kaled.alshmrany@manchester.ac.uk

13

FuSeBMC AI

FuSeBMC - AI

https://github.com/FuSeBMC/
mailto:kaled.alshmrany@manchester.ac.uk
https://github.com/kaled-alshmrany/FuSeBMC

	Slide 1
	Slide 2
	Slide 3: Market Size
	Slide 4: Proposed Solution FuSeBMC-AI
	Slide 5: FuSeBMC-AI Software Project
	Slide 6: Competition on Software Testing 2023: Results of the Cover-Error Category
	Slide 7: Competition on Software Testing 2023: Results of the Cover-Branches Category
	Slide 8: Competition on Software Testing 2023: Results of the Overall Category
	Slide 9: Awards
	Slide 10: Publications
	Slide 11
	Slide 12
	Slide 13: Thank you …
	Slide 14
	Slide 15: Overview of FuSeBMC-AI
	Slide 16: Software Security Vulnerabilities
	Slide 17
	Slide 18: Proposed Solution:
	Slide 19: New to FuSeBMC-AI …
	Slide 20: GUI Interface
	Slide 21: AI Fuzzing
	Slide 22: Repairing Plan
	Slide 23: Market Size
	Slide 24: Market Size
	Slide 25: Repairing Phase
	Slide 26: Repairing Phase
	Slide 27: Repairing Phase
	Slide 28: Repairing Phase
	Slide 29: Repairing Phase
	Slide 30: Can FuSeBMC work on Real-World software?
	Slide 31: Can FuSeBMC work on Real-World software?
	Slide 32

