Security in Adversarial Machine Learning

Giulio Zizzo

Machine Learning Applications

Google DeepMind: Mastering Go via self play in 2017

Machine Learning Applications

Darktrace cyber security solutions

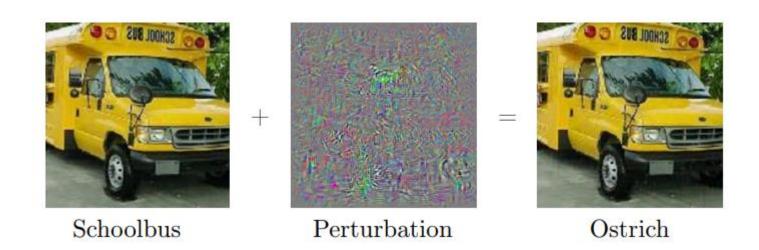
Machine Learning Applications

Art Generation

Machine Learning Applications

Stock Market predictions

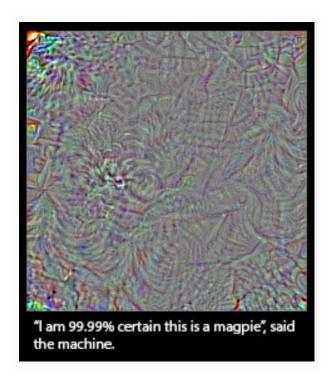
Machine Learning Applications



Autonomous Cars

Evasion Attacks

 Originally discovered by researchers when trying to better interpret neural networks.


Industrial Control Systems

- Sensor data can be fabricated so that a process runs sub-optimally.
- Conducted in such a manner to remain undetected.

Combating Stealthy Attackers

- Better explore the uncertainty in neural network predictions.
- Networks should be more uncertain about adversarial samples.
- Difficulties:
 - Bayesian approaches don't scale well to neural networks of any real size like ones used in intrusion detection systems.
 - Off data manifold samples represent an intractable dataset size.

Early Results

- High detection rate (95%+) with low false positives (<5%) on simple datasets.
- Caveats:
 - working on adaptive attacker detection.
 - Datasets are simple! (MNIST/CIFAR10) How well does this carry over to more complex multi-stage time-series data such as what is found in industrial control systems?

Conclusions

- Adversarial Machine Learning is a new and dynamic research area.
- Many challenges remain and must be addressed for machine learning systems to be entrusted with critical decisions.
- Can lead to a deeper understanding of such system and heavily overlaps with neural network interpretation.

Questions?