

#### Interconnected safe and secure systems

Peter Popov,

City, University of London,

**RiTICS Spring Showcase 2019** 

15<sup>th</sup> April 2019



# **Overview of CERDICS (RITICS - 1)**





# Outline

- What we promised in IS3
  - WP 1 "Consultation and outreach"
    - Safety and Security Workshop with CINEF
    - Interdependency modelling Workshop with ResilShift and a report on the state-of-the art and ways forward.
  - WP2: Model based analysis
    - Review of SoA in modelling "Resilient Operator of a CNI operator" and identify research issues
    - Examples of models useful in "co-engineering" for safety and security
  - WP3: Safety and Security Decision Making
    - Change of tempo in safety-case lifecycle to account for security (e.g. how to make safety cases robust to software patching)
    - Trade-offs and synergies.



#### **Progress made to date**

- Engagement with stakeholders ongoing. Workshops planned for mid-May/early-June
- Models of safety and security (examples)
  - Examples of models of embedded systems (details will be presented today)
  - Examples of models of critical infrastructures (e.g. to help with "optimal allocation of defence in depth")
    - Ongoing work with Nordic-32 simulator (used by City in RITICS - 1).
- Models of analysis from SysML models
  - not in the proposal, but approved by sponsors (will give a presentation on the progress)



#### Models for combined analysis of safety and security





## Combined safety and security analysis ≠ S + S

- Combined analysis is not just *safety-only* + *security-only* analyses.
- A truly combined SSP analysis requires an explicit and credible model of dependencies between the properties of interest, e.g.:
  - Conflicting Safety and Security requirements lead to the need for tradeoff analysis:
  - successful attacks may *impair safety* against accidental faults, e.g. by eliminating the <u>safe state</u> (real attacks on safety are well documented)
    - "If it is not secure it is not safe"
  - strengthening security controls typically affects performance (e.g. response time)
    - and increases the likelihood of missing a hard real-time deadline

# Credible trade-off analysis is impossible without a credible combined analysis



# **Quantitative Combined SS analysis (2)**

- Hazard analysis to identify security threats that may impact safety (or performance) is complemented by:
  - Judgement about the *likelihood* of various events
    - Attack occurrence
    - Attack success probability
  - An explicit *model of how successful attacks* affect reliability/performance of components. Some examples include:
    - the functionality of a *safe state* is blocked (eliminated), or
    - the rate of failure of compromised software components increases, thus increasing the likelihood of unsafe system failures.



# **Quantitative Combined SS analysis (3)**

- Common mistakes in constructing models for combined SS analysis:
  - Safety is demonstrated in "trusted" environment
  - Security controls are added (e.g. to meet security requirements), but their impact is limited to checking if the additional overhead due to these security controls is tolerable.
- The questions that we should address in constructing models suitable for SS analysis are:
  - Security controls *are not perfect*. They may have flaws, they may be also compromised.
  - Anticipate compromises everywhere and study the implication of each compromise.
  - The answers related to likelihood of attacks and their effect are subject to *uncertainty*. Can we quantify credibly this uncertainty, or at least establish *bounds* on it?



## Model of Dependence: Example 1





- How much worse is system safety in adverse environment?
  - It depends on how we model the adverse environment?
    - Model 1: All successful attacks lead to unsafe state.
    - Model 2: Attacks lead to a compromised state, from which transitions are possible to safe/unsafe state or to OK (e.g. if we deploy "proactive recovery").
  - The outcomes of trade-off analysis will be affected significantly by the choice of dependency model (1 or 2 above).



 Models of system safety in "adverse environment"



#### Model of Dependence: Example 2

- Consider the case when *reliability* of a software component *is reduced* by a successful attack which compromises software integrity.
  - An example: alteration of a threshold value of a software-based *protection device* (e.g. of a power line)

Model the effect of a successful attack on software reliability:

- $\lambda_{\text{clean}} \leq \lambda_{\mu 1}, \, \lambda_{\mu 2}, \, \dots, \, \lambda_{\mu n},$ 
  - Successful attacks increase the rate of software failure.
- Validating a safety goal would be dependent on:
  - security goal set for attacks.
  - attack effect on software reliability.
- Parameterisation becomes harder.
- A similar model of dependence on security, applies to performance, too
  - Successful attacks may increase the response time of a s/w component



Popov, P.T., Models of reliability of fault-tolerant software under cyber-attacks, (ISSRE 2017). Model of attacks validated recently on NORDIC-32.



## Model of Dependence: Example 3

- The safe state may be eliminated as a result of a cyber attack.
- $\lambda_{UF} \mid \text{NonC SS} \leq \lambda_{UF} \mid \text{Com SS}$
- UF unsafe failure.
- NonC SS non-compromised safe state
- Com SS compromised safe state.
- Clearly, the effect of removing the safe state is an *increased* rate of unsafe failure.
- Setting a safety goal for unsafe failure is simple, but its validation is dependent on the security goal set for the security event "compromising the safe state".
- This particular problem is recognised in IAEA guidelines.



Popov, P.T., Stochastic Modeling of Safety and Security of the e-Motor, an ASIL-D Device., (SAFECOMP 2015).



#### Models for SS analysis in practice

• An AQUAS (an EU ECSEL JU project) case study: A virtual prototype of an Industrial Drive.





## A SAN (stochastic activity networks) model



- Modelled all zones (with some simplifications)
- Modelled 2 attacks:
  - Attack on the client application: when client compromised, the failure rate increases.
  - Attack on the safety function (bringing the device to a safe state, i.e. stop the motor). Safety function
    is implemented as a 2-channel sub-system:
    - A successful attack on a channel of the safety function may affect either the *coverage* (i.e. the probability of detecting a failure provided there is a failure) or the probability of *false alarm*.
    - Attacks may be on a single channel or simultaneously on both channels (with small interval between attacks of the channels).
- Sensitivity analysis (rate of attacks, probability of success of attacks) completed. Looked at the effect of "cleansing" to mitigate the consequences of successful attacks.
  - Numbers suggests that cleansing is quite effective! The "owner" of the prototype convinced that the client application should be designed with cleansing.



#### Models of Combined analysis (Safety and Security)





ClientApplication

AttackOnClient

ServerimpiModel

SafetvFunction 1

#### System development and SS analysis: Deriving SAN models from SysML model

Submodel

afetvChannelsDependencvMode

Submodel

Initialisation



Suhmodel

Adjudicator

SafetvFunction 2



#### Questions